
Alex Matrosov (@ matrosov) ,

Mikhail Gorobets ,

Oleksandr Bazhaniuk (@ABazhaniuk),

Andrew Furtak ,

Yuriy Bulygin (@c7zero)

Attacking Hypervisors

via Firmware and Hardware

Advanced Threat Research

Agenda

Hypervisor based isolation

Firmware rootkit vs hypervisor

Attacking hypervisors through system firmware

Tools and mitigations

Conclusions

Hypervisor Based Isolation

Image source

http://www.tripadvisor.com/LocationPhotoDirectLink-g294474-d2372209-i94964664-SoloEast_Travel_Chernobyl_Day_Trip-Kiev.html

Hypervisor Based Isolation

Hardware

I/O

Memory

Network

Graphics

VMM / Hypervisor

System Firmware

(BIOS, U/EFI firmware, SMI handlers, Corebooté)

CPU

P
riv

ile
g

e

Virtual Machine

Operating System

App App

Virtual Machine

App App

Operating System

Hypervisor Based Isolation

Hardware

I/O

Memory

Network

Graphics

VMM / Hypervisor

System Firmware

(BIOS, U/EFI firmware, SMI handlers, Corebooté)

CPU

P
riv

ile
g

e

Virtual Machine

Operating System

App App

Virtual Machine

App Attack

Operating System

Hypervisor Protections

Software Isolation

CPU / SoC: traps to hypervisor (VM Exits),
MSR & I/O permissions bitmaps, rings (PV)

Memory / MMIO: hardware page tables (e.g.
EPT, NPT), software shadow page tables

Devices Isolation

CPU / SoC: interrupt remapping

Memory / MMIO: IOMMU, No-DMA ranges

CPU Virtualization (simplified)

VMM Host

VM Guest OS

VM Exit Handler

VM Control

Structure (VMCS)
MSR Bitmaps I/O Bitmaps

Instructions,

exceptions,

interruptsé

Extended Page

Tables

Access to

I/O ports

(e.g. 0xB2)Access to CPU

MSRs

(e.g. DEBUGCTL)

Access to

memory

(EPT violations)

Hypervisor Traps (VM Exits)

Protecting Memory with HW Assisted Paging

VA0

VA1

VA2

VA3

VA4

é

VM Guest OS

GPA0

GPA1

GPA2

GPA3

GPA4

GPA5

GPA6

é

GPA0 Ą HPA3

VMM Host

GPA2 Ą HPA5

GPA4 Ą HPA4

(1:1 mapping)

GPA6 Ą block

HPA0

HPA1

HPA2

HPA3

HPA4

HPA5

HPA6

é

Process Virtual

Memory

Guest Page Tables

Guest Physical

Memory

EPT

Host Physical

Memory

VMCS

EPTPCR3

Hypervisor Protections

System Firmware Isolation

Firmware Rootkit

vs Hypervisor

Image source

http://www.traduzioniclick.com/wp-content/uploads/2014/07/big_and_small_cat.jpg

What is firmware rootkit?

Hardware

I/O

Memory

Network

Graphics

VMM / Hypervisor

System Firmware

CPU

P
riv

ile
g

e

Virtual Machine

Operating System

App App

Virtual Machine

App App

Operating System

Rootkit

(e.g. DXE driver)

Firmware rootkit can open a backdoor for

an attacker VM to access all other VMs

System Firmware Rootkit

VMM / Hypervisor

Backdoor

2. During each boot

rootkit installs a

backdoor for an

attacker controlled VM

Virtual Machine

Operating System

App App

Attacker VM

App App

Operating System

1. At some point

system firmware got

infected with a rootkit

staying persistent

3. Now using this

backdoor, attacker VM

can access all of

memory of victim VMs

ñBackdoorò for attackerôs VM

2. Rootkit added page

table entries to attacker

VM which expose entire

physical memory

1. Firmware rootkit

searches & modifies VMôs

VMCS(B), VMM page tables

Now attacker VM has full

access to physical memory

of VMM and other VMs

So how would one install a rootkit in

the firmware?

Using hardware SPI flash programmeré

USB & exploiting weak firmware protections...

From privileged guest (e.g. Dom0). Requires

privesc from normal guest (e.g. DomU) or remote

From the host OS before/in parallel to VMM

From normal guest if firmware is exposed to the

guest by VMM

For example, if firmware is not adequately

write protected in system flash memory

Software access and exploiting some

vulnerability in firmware

DEMO
Rootkit in System Firmware Exposes

Secrets from Virtual Machines

https://youtu.be/sJnIiPN0104
Image source

http://consciouslyenlightened.com/wp-content/uploads/2015/07/matrix780023.jpg

We flashed rootkited part of firmware image
from within a root partition to install the rootkit

The system doesn t properly protect firmware
in SPI flash memory so we could bypass
write-protection

Finally more systems protect firmware on the
flash memory

common.bios_wp

CHIPSEC module to test write-protection

Malware can exploit vulnerabilities in firmware
to install a rootkit on such systems

Attacking and Defending BIOS in 2015

http://www.intelsecurity.com/advanced-threat-research/content/AttackingAndDefendingBIOS-RECon2015.pdf

VMM ñforensicsò

With the help of a rootkit in firmware any VM guest
can extract all information about hypervisor and other
VMs and just from memory

Á VMCS structures, MSR and I/O bitmaps for each VM guest

Á EPT for each VM guest

Á Regular page tables for hypervisor and each VM guest

Á IOMMU pages tables for each IOMMU device

Á Full hypervisor memory map, VM exit handler

Á Real hardware configuration (registers for real PCIe devices,
MMIO contents)

VMM Hardware Page Tablesé

Attacking Hypervisors through

System Firmware
(with OS kernel access)

Image source

http://www.hermann-uwe.de/files/images/bios_chip_plcc_socket.jpg

Pointer Vulnerabilities in SMI Handlers

Phys Memory

SMI Handlers in
SMRAM

OS Memory

Exploit tricks SMI handler to write to an address inside SMRAM

Attacking and Defending BIOS in 2015

RAX (code)

RBX (pointer)

RCX (function)

RDX

RSI

RDI

Fake structure inside SMRAM

SMI

http://www.intelsecurity.com/advanced-threat-research/content/AttackingAndDefendingBIOS-RECon2015.pdf

Exploiting firmware SMI handler to attack VMM

Hardware

I/O

Memory

Network

Graphics

Hypervisor

SMI Handlers

System Firmware

CPU

Virtual Machine

(child partition)

Operating System

App App

Root partition

App

Operating System

Attack

S
M

I
P

o
in

te
r Compromised VM

injects SMM payload

through the input

pointer vulnerability in

SMI handler

SMM firmware

payload modifies

hypervisor code or

VMCS/EPT to install

a backdoor

VMM allows VM to

invoke SMI handlers

(grants access to SW

SMI I/O port 0xB2)

DEMO
Attacking Hypervisor via

Poisonous Pointers in Firmware SMI handlers

https://youtu.be/zUJEL9cGSE8

Root cause? Port B2h is open to VM in I/O bitmap

So this is firmware issue, right? What

if firmware validates pointers?

Still exploitableé

Phys Memory

SMI Handlers in
SMRAM

Hypervisor Memory
(Protected by EPT)

Firmware SMI handler validates input pointers to ensure they

are outside of SMRAM preventing overwrite of SMI code/data

RAX (code)

RBX (pointer)

RCX (function)

RDX

RSI

RDI

SMI

Point SMI handler to overwrite VMM page!

Phys Memory

SMI Handlers in
SMRAM

Hypervisor Memory
(Protected by EPT)

ÅVT state and EPT protections are OFF in SMM (without STM)

ÅSMI handler writes to a protected page via supplied pointer

RAX (code)

RBX (pointer)

RCX (function)

RDX

RSI

RDI

VMM Protected Page

SMI

VMM

Protections

are OFF

Attacking VMM by proxying through SMI handler

Hardware

I/O

Memory

Network

Graphics

VMM / Hypervisor

SMI Handlers

System Firmware

CPU

VM with direct access to

SMIs invokes SMI

handler and supplies a

pointer to some VMM

page

Virtual Machine

(child partition)

Operating System

App App

Root partition

App

Operating System

Attack

SMI handler writes to

the supplied pointer

overwriting contents of

protected VMM page

Do Hypervisors Dream

of Electric Sheep?

Vulnerability used in this section is VU#976132 a.k.a. S3 Resume

Boot Script Vulnerability independently discovered by ATR of Intel

Security, Rafal Wojtczuk of Bromium and LegbaCore

Itôs also used in Thunderstrike 2 by LegbaCore & Trammell Hudson

http://www.kb.cert.org/vuls/id/976132
http://www.intelsecurity.com/advanced-threat-research/content/WP_Intel_ATR_S3_ResBS_Vuln.pdf
http://www.intelsecurity.com/atr
http://www.bromium.com/
http://www.legbacore.com/

Waking the system from S3 ñsleepò state

VMM / Hypervisor

U/EFI System Firmware

Virtual Machine

Platform Init

DXE

UEFI core

& drivers

BDS

Platform Init

S3 Boot

Script Table

Restores

hardware config
Script EngineN

O
R

M
A

L
 B

O
O

T

S
3
 R

E
S

U
M

E

Apps / OS

